output shouldn't be active more than 60 s. Beyond this time overheating protection can be activated (in this case outputs will switch off for 60 s).

- For overload protection use fuse F (ESKA 522.724 5 A 250 V) according to Electrical diagram.

Package contents

- Flush shutter DC

Electrical diagram 12-24VDC

Notes for the diagram:
+VDC (12-24VDC)
-VDC (0 V)
Q1 Output for motor UP (open)
Q2 Output for motor DOWN (close)
12 Input for switch/push button DOWN (close) Input for switch/push button DOWN (clos
Input for switch/push button UP (open)
TS Terminal for digital temperature sensor (only for Flush shutter DC module compatible digital temperature sensor, which must be ordered separately).

Service button (used to add or remove module from the Z-Wave network).

Module Inclusion (Adding to Z-wave network)

- Connect module to power supply (with temperature sensor connected - if purchased),
- auto-inclusion (works for about 5 seconds after connected to power supply) or
press service button \mathbf{S} for more than 2 second or press push button 11 three times within 3s (3 times change switch state within 3 seconds).
NOTE1: For auto-inclusion procedure, first set main controller into inclusion mode and then connect module to power supply.
NOTE2: When connecting temperature sensor to module that has already been included, you have to exclude module first. Switch off power supply, connect the sensor and re-include the module.
Module Exclusion/Reset (Removing from

Z-Wave network)

- Connect module to power supply
bring module within maximum 1 meter (3 feet) of the main controller,
- enable add/remove mode on main controller,
- press service button \mathbf{S} for more than 6 second or
press push button $\mathbf{I 1}$ five times within 3 s (5 times change switch state within 3 seconds) in the first 60 seconds after the module is connected to the power supply.
By this function all parameters of the module are set to default values and own ID is deleted.
If service button S is pressed more than 2 and less than 6 seconds (or if push button I1 is pressed three times within 3s) module is excluded, but configuration parameters are not set to default values.

Associations

Association enables Flush shutter DC module to transfer commands inside Z-wave network directly (without main controller) to other Z-Wave modules.

Associated Groups:

Root device:
Group 1: default reporting group (reserved for the main controller).
Group 2: basic on/off (triggered at change of the input II state and reflecting its state) up to 16 nodes.
Group 3: basic on/off (triggered at change of the input 12 state and reflecting its state) up to 16 nodes. Group 4: basic on/off (triggered at sensing moving direction of roller: up=FF, down=0) up to 16 nodes. Group 5: basic on/off (triggered at reaching roller position bottom=FF, top=0) up to 16 nodes.
Group 6: basic on/off (triggered at reaching roller position bottom=FF, not bottom=0) up to 16 nodes.
Group 7: multilevel set (triggered at changes of value of the Flush shutter DC position) up to 16 nodes. Group 8: multilevel set (triggered at changes of value of slats tilting position) up to 16 nodes.
Group 9: multilevel sensor report (triggered at change of emperature sensor) up to 16 nodes.

End point 1:

Group 1: Lifeline group, 0 nodes allowed.
Group 2: basic on/off (triggered at change of the input 11 state and reflecting its state) up to 16 nodes.
Group 3: basic on/off (triggered at change of the input 12 state and reflecting its state) up to 16 nodes. Group 4: basic on/off (triggered at sensing moving direction of roller: up=FF, down=0) up to 16 nodes. Group 5: basic on/off (triggered at reaching roller position. bottom=FF, top=0) up to 16 nodes.
Group 6: basic on/off (triggered at reaching roller position: bottom=FF, not bottom=0) up to 16 nodes.
Group 7: multilevel set (triggered at changes of value of the Flush shutter DC position) up to 16 nodes.

End point 2:

Group 1: Lifeline group, 0 nodes allowed.
Group 2: multilevel set (triggered at changes of value of

lats tiliting position) up to 16 nodes

End point 3 :

Group 1: Lifeline group, 0 nodes allowed.
Group 2: multilevel sensor report (triggered at change of temperature sensor) up to 16 nodes.

Automatic calibration

Automatic calibration is a process during which the Flush shutter DC learns the position of the limit switches

Shutter positioning calibration

(par. 71 set to 0)
There are two procedures of calibration.
Calibration through main controller UI

1) Include the module into the Z-wave network, according to module include instructions.
2) Set the parameter 78 (Forced Flush shutter DC calibration) value to 1 .
3) Flush shutter DC performs the calibration process, completing full cycle - up, down and up again.
4) Set the parameter 78 (Forced Flush shutter DC calibration) value to 0 .
Calibration through the inputs I1 and I2
5) Include the module into the wireless network, according to module inclusion instructions.
6) Quick press the switch/push-button connected to II input and wait until the shutter reach upper limit switch. 3) Quick press the switch/push-button connected to 12 input and wait until the shutter reach lower limit switch.
7) Quick press the switch/push-button connected to II input and wait until the shutter reach upper limit switch. Slates tilting position calibration
(par. 71 set to 1)
When enabling venetian blind mode, position calibration for slats titing must be done. After doing this, position and angle of slates can be set. By default full turn time for slates is set to $1,5 \mathrm{~s}$. This value can be changed with parameter 72 .
8) Include and make module calibration according to section 'Shutter positioning calibration'
9) Set parameter 71 to 1 'Venetian blinds'.
10) Exclude the module (without reset!).
11) Include the module.
12) After module inclusion beside main shutter widget another widget for slates control will appear on UI.
13) By default full turn movement is set to 1,5 s. If this time is too long (if after slates full cycle shutter starts moving up or down), decrease this time defined with parameter 72 . If this time is to short (if slats will not turn for full cycle), increase this time defined with parameter 72.
Manual operation for shutter
(par. 71 set to 0)
Module allows connecting of push-buttons (mono-stable) or switches (bi-stable) to 11 and 12 terminals.
Clicking push-button (<2s) connected to I1 (up), initiates up movement.

Clicking push-button (<2s) connected to 12 (down), initiates down movement.
If the shutter is moving, each click, of any push-button, will stop the movement.
Keeping pressed push-button (>2s) connected to I1 (up), initiates up movement, until push-button is released. Keeping pressed push-button (>2s) connected to 12 (down), initiates down movement, until push-button is released.

Manual opera

(par. 71 setio)
Slates on start position - 0 degree
Clicking push-button (for time < full turn slates time-par.72) connected to II (up), initiates slates turning towards end 180 degree position, until push-button is released. Clicking push-button (for time < full turn slates time-par.72) connected to 12 (down), initiates shutter down movement. If the shutter is moving, each click, of any push-button, will stop the movement.
Keeping pressed push-button (for time >full turn slates time-par.72) connected to II (up), initiates full slates turn and up movement, until the push-button is released.
Keeping pressed push-button (for time > full turn slates time-par.72) connected to I 2 (down), initiates shutter down movement, until the push-button is released.
Keeping pressed push-button (for time > (full turn slates time +2 s)) connected to 11 (up), initiates up movement, until push-button is released.
Slates on end position - 180 degree
Clicking push-button (for time < full turn slates time-par.72) connected to II (up), initiates shutter up movement.
Clicking push-button (for time < full turn slates time-par.72) connected to I 2 (down), initiates slates turning towards start - 0 degree position, until the push-button is released. If the shutter is moving, each click, of any push-button, will stop the movement.
Keeping pressed push-button (for time > full turn slates time-par.72) connected to 11 (up), initiates shutter up movement, until the push-button is released
Keeping pressed push-button (for time > full turn slates time-par.72) connected to 12 (down), initiates full slates turn and down movement, until the push-button is released.
Keeping pressed push-button (for time > (full turn slates time +2 s)) connected to 12 (down), initiates down movement, until push-button is released
Configuration parameters
Parameter no. 10 - Activateldeactivate functions ALL ON I ALL OFF
Available contig. parameters (data type is 2 Byte DEC):

- default value 255
- 255 - ALL ON active, ALL OFF active.
- $0-\mathrm{ALL}$ ON is not active, ALL OFF is not active
- 1-ALL ON is not active ALL OFF active - 2 - ALL ON active ALL OFF is not active

Module responds to commands ALL ON / ALL OFF that may be sent by the main controller or by other controller belonging to the system
Parameter no. 40 - Power reporting in Watts on power change for Q1 or Q2
Set value means percentage, set value from $0-100=0 \%$ - 100\%. Available configuration parameters (data type is 1 Byte DEC):

- default value 1
- 0 - reporting disabled
- $1-100=1 \%-100 \%$ Reporting enabled. Power report is send (push) only when actual power (in Watts) in real time changes for more than set percentage comparing to previous actual power in Watts, step is 1%.
NOTE: if power changed is less than 1 W , the report is not send (pushed), independent of percentage set.
Parameter no. 42 - Power reporting in Watts by time interval for Q1 or Q2
Set value means time interval $(0-32767)$ in seconds, when power report is send. Available configuration parameters (data type is 2 Byte DEC):
- default value $300=300$ s
- $1-32767=1$ second -32767 seconds. Reporting enabled, power report is send with time interval set by entered value.

Parameter no. 71- Operating modes

This parameter defines selection between two available operating modes. Available configuration parameters (data type is 1 Byte DEC):

- default value 0
- 0 - shutter mode
- 1 - venetian mode (up/down and slate rotation)

NOTE: When setting parameter, module needs to be excluded and included again! Please check detailed description in this manual.
Parameter no. 72 - Slats tilting full turn time This parameter defines the time necessary for slats to make full turn (180 degrees). Available configuration parameters (data type is 2 Byte DEC)

- default value $150=1,5$ seconds
- 0 - tilting time disabled
$1-32767=0,01$ seconds $-327,67$ seconds
NOTE: If time set is too high, this will result that after full turn, shutter will start move up/down, for time remaining. Parameter no. 73 - Slats position
This parameter defines slats position after up/down movement through Z-wave or push-buttons. Available configuration parameters (data type is 1 Byte DEC):
- default value 1
- 0-Slats return to previously set position only in case of Z -wave control (not valid for limit switch positions).
- 1 - Slats return to previously set position in case of Z -wave control, push-button operation or when the

lower limit switch is reached

Parameter no. 74 - Motor moving up/down time

 This parameter defines shutter motor moving time of complete opening or complete closing. Available configuration parameters (data type is 2 Byte DEC): - default value 0- 0 - moving time disabled (working with limit switches)
- $1-32767=0,1$ seconds $-3276,7$ seconds. After that time motor is stopped (relay goes to off state) NOTE: Important is that the reference position to manually set moving time is always shutter lower position! Set parameter 74 to 0 and move the shutter (using up/down push buttons or main controller UI) to the lowest desired position. On this shutter position, set parameter 74 to time for complete opening or complete closing. At this point shutter can be moved up (open) for set time, but can't be moved down because this position is already set as lower shutter position.
To change shutter lower position below already set (manual recalibration), parameter 74 must be set to 0 and repeat the procedure described above.
In case shutter has limit switches, but anyhow you would like to limit opening/closing position by time, you can still do it. In case you put time that is longer that opening/closing real time limited by limit switches, shutter will stop at limit switch, but the module relay will switch off after define time, not by shutter limit switch. Take in consideration that in this condition, the positioning with slider through UI will not show correct shutter position.
Parameter no. 76 - Motor operation detection
Power threshold to be interpreted when motor reach the limit switch. Available configuration parameters (data type is 1 Byte DEC):
- default value $6=0,6 \mathrm{~W}$

5-100 ($0,5 \mathrm{~W}-10 \mathrm{~W}$), step is $0,1 \mathrm{~W}$ NOTE: Motors with power consumption less than $0,5 \mathrm{~W}$ could not be auto calibrated. In that case set time manually (par. 74).

Parameter no. 78 - Forced Shutter DC calibration

By modifying the parameters setting from 0 to 1 a Shutter DC module enters the calibration mode. Available configuration parameters (data type is 1 Byte DEC):

- default value 0
- 1 - Start calibration process (when calibration process is finished, completing full cycle - up, down and up, set the parameter 78 (Forced Shutter calibration) value back to 0 .
Parameter no. 85 - Power consumption max delay time
This parameter defines the max time before motor power consumption is read after one of the relays is switched ON . If there is no power consumption during this max time (motor not connected, damaged or requires higher time to start, motor in end position,...) the relay will switch

OFF. Time is defined by entering it manually. Available configuration parameters (data type is 1 Byte DEC):

default value $8=800 \mathrm{~ms}$

3-50 $=0,3$ seconds -5 seconds (100 ms resolution) Parameter no. 86 - Power consumption at limit switch delay time
This parameter defines the max time at limit switch, when power consumption is below power threshold. If the power consumption during this time is below power threshold (par. 76), the active output will switch off, means that limit switch is reached. Available configuration parameters (data type is 1 Byte DEC):
default value $8=800 \mathrm{~ms}$
$3-50=0,3$ seconds -5 seconds (100 ms resolution) Parameter no. 90 - Time delay for next moto movement
This parameter defines the minimum time delay between next motor movement (minimum time between switchin motor off and on again). Available configuration parameters (data type is 1 Byte DEC):
default value $5=500 \mathrm{~ms}$
$1-30=0,1$ seconds -3 seconds (100 ms resolution)
settings
Set value is added or subtracted to actual measured value by sensor. Available configuration parameters (data type is 2 Byte DEC):

- default value 32536
- 32536 - offset is 0.0 C
- From 1 to 100 - value from $0.1^{\circ} \mathrm{C}$ to $10.0^{\circ} \mathrm{C}$ is added to actual measured temperature.
From 1001 to 1100 - value from $-0.1^{\circ} \mathrm{C}$ to $-10.0^{\circ} \mathrm{C}$ is subtracted to actual measured temperature.
Parameter no. 120 - Digital temperature sensor reporting
If digital temperature sensor is connected, module reports measured temperature on temperature change defined by this parameter. Available configuration parameters (data ype is 1 Byte DEC):
Default value $5=0,5^{\circ} \mathrm{C}$
0 - reporting disabled
$1-127=0,1^{\circ} \mathrm{C}-12,7^{\circ} \mathrm{C}$, step is $0,1^{\circ} \mathrm{C}$

Technical Specifications
Power supply $12-24 \mathrm{VDC}+/-10 \%$ Rated load current 2 A Overcorrect protection 5 A Output circuit power of DC output (resistive load) $48 \mathrm{~W}(24 \mathrm{VDC})$ Power measurement accuracy $+/-5 \%$ Digital temperature sensor range (sensor must be ordered separately) $-50 \sim+125^{\circ} \mathrm{C}$ Operation temperature $-10 \sim+40^{\circ} \mathrm{C}$

Electricity consumption	cca. $0,3 \mathrm{~W}$
Distance	up to 30 m indoors (depending on building materials)
Dimensions (WxHxD) (package)	$41,8 \times 36,8 \times 15,4 \mathrm{~mm}$ $(79 \times 52 \times 22)$
Weight (Brutto with package)	$28 \mathrm{~g}(34 \mathrm{~g})$
For installation in boxes	$\varnothing \geq 60 \mathrm{~mm}$ or 2 M
Switching	H bridge

Z-Wave Device Class:

BASIC_TYPE_ROUTING_SLAVE
GENERIC_TYPE_SWITCH_MULTILEVEL
SPECIFIC TYPE CLASS C MOTOR
Z-Wave Supported Command Classes:
COMMAND_CLASS_ZWAVEPLUS_INFO_V2 COMMAN_-CLASS_VERSION_V2 COMMAND_CLASS_MANUFACTURER_SPECIFIC_V2

COMMAND_CLASS_BASIC_V1
COMMAND_CLASS_SWITCH_ALL_V1
COMMAND_CLASS_SWITCH_BINARY_V1
COMMAND_CLASS_SWITCH_MUL
COMMAND CLASS_METER V4
COMMAND_CLASS_METER_VA
COMMAND_CLASS_MULTI_CHANNEL_V4
COMMAND_CLASS_ASSOCIATION_V2
COMMAND_CLASS_MULTI_CHANNEL_ASSOCIATION_V3 COMMAND_CLASS_CONFIGURATION_V1
COMMAND_CLASS_MARK
COMMAND_CLASS_BASIC_V1
COMMAND_CLASS_SWITCH_MULTILEVEL_V3 Endpoint1:
BASIC_TYPE_ROUTING_SLAVE
GENERIC_TYPE_SWITCH_MULTILEVEL
SPECIFIC_TYPE_CLASS_C_MOTOR_CONTROL
Command Classes:
COMMAND CLASS_VWAVEPLUS_INFO_V2
COMMAND_CLASS_VERSION_V2
COMMAND_CLASS_SWITCH_ALL_V1
COMMAND_CLASS_SWITCH BINARY V1
COMMAND_CLASS_SWITCH_MUTIEVEL
COMMAND_CLASS_SLASS METER V4
COMMAND_CLASS_ASSOCIATION_V2
COMMAND_CLASS_MULTI_CHANNEL_ASSOCIATION_V
COMMAND_CLASS_ASSOCIATION_GRP_INFO_V2
COMMAND CLASS BASIC V1
COMMAND_CLASS_SWITCH_MULTLEVEL_V3
Endpoint 2 :
Device Class:
BASIC_TYPE_ROUTING_SLAVE
BASIC_TYPE_ROUTING_SLAVE
GENERIC_TYPE_SWITCH_MULTLEVEL
SPECIFIC_TYPE_CLASS_C_MOTOR_CONTROL
Command Classes:
COMMAND_CLASS_ZWAVEPLUS_INFO_V2
COMMAND_CLASS_VERSION_V2
COMMANDCLASS BASIC
COMMAND_CLASS_SWITCH ALL
COMMAND_CLASS_SWITCH_BINARY_V1
COMMAND_CLASS_SWITCH_MULTLLEVEL_V
COMMAND_CLASS_ASSOCIATION_V2
COMMAND_CLASS_MULTI_CHANNEL ASSOCIATION v
COMMAND_CLASS_MARK
COMMAND_CLASS_BASIC_V1
COMMAND_CLASS_SWITCH_MULTILEVEL_V
Endpoint 3 :
Endpoint ${ }^{3}$:
Device Class:
GENERIC_TYPE_SENSOR_MULTILEVEL SPECIFIC_TYPE_ROUTING_SENSOR_MULTLLEVEL

Command Classes

COMMAND_CLASS_ZWAVEPLUS_INFO_V2
COMMAND_CLASS_VERSION_V

COMMAND_CLASS_ASSOCIATION_V2
COMMAND_CLASS_MULTICHANNEL_ASSOCIATION COMMAND_CLASS_ASSOCIATION_GRP_INFO_V2
NOTE: The above list is valid for the product with a temperature sensor connected to TS terminal at the time of inclusion. In case the sensor is not connected then the following command class and endpoint 3 are not

supported:

COMMAND_CLASS_SENSOR_MULTLLEVEL_V7
Endpoint 2 is supported by the module only when the parameter no. 71 is set to the value 1 and the module is excluded and re-included into the network.
This product can be included and operated in any Z-Wave network with other Z-Wave certified devices from any other manufacturers. All constantly powered nodes in the same network will act as repeaters regardless of the vendor in order to increase reliability of the network.

Important disclaimer

Z-wave wireless communication is inherently not always 100% reliable, and as such, this product should not be used in situations in which life and/or valuables are solely dependent on its function.

Warning!

Do not dispose of electrical appliances as unsorted municipal waste, use separate collection facilities
Contact your local government for information regarding the collection systems available. If electrical appliances are disposed of in landfills or dumps, hazardous substances can leak into the groundwater and get into the food chain, damaging your health and well-being. When replacing old appliances with new once, the retailer is legally obligated to take back your old appliance for disposal at least for free of charge.

This user manual is subject to change and improvement without notice.
NOTE: User manual is valid for module with SW version S4 (SW version is part of P/N)!
Example: P/N: ZMNHODx H1S4P1
Qubino
Goap d.o.o. Nova Gorica
Ulica Klementa Juga 007
5250 Solkan
Slovenia
E-mail: info@qubino.com
Tel: +3865 3359500 Web: www.qubino.com

Date: 18.12.2015
Document: Qubino_Flush shutter DC
PLUS user manual_V1.3_eng

